Wechselkopfbohrer für hohe Vorschübe und höchste Produktivität

TPDC Plus

(TPDC-CP, CM, CN / TPDC-FC)

- Hochpräzise Bearbeitungsergebnisse bei hohen Vorschüben dank der optimierten Werkzeuggeometrien
- Umfassendes Sortiment für eine Vielzahl von Anwendungen

Wechselkopfbohrer für hohe Vorschübe und höchste Produktivität

TPDC Plus

Die Anforderungen der Industrie hinsichtlich Produktivität sowie Bearbeitungsqualität steigen stetig und somit auch die Herausforderungen an die Entwicklung von Zerspanungswerkzeugen.


Der neu entwickelte Wechselkopfbohrer **TPDC Plus** ist unsere Lösung für produktive und prozesssichere Bearbeitungen von heute und morgen.

Der **TPDC Plus** vereint höchste Geschwindigkeiten und Vorschübe mit den Vorzügen anwenderfreundlicher Handhabung. Das einstufige Klemmsystem ermöglicht das einfache und schnelle Wechseln des Bohrkopfes ohne Ausspannen des Werkzeuges, was die Nebenzeiten weiter reduziert.

Unsere Bohrköpfe sind auf die verschiedenen Anforderungen der jeweiligen Werkstoffe abgestimmt und zeichen sich durch das ultra-feine Substrat, eine hohe Schmierfähigkeit und spezielle Schneidkantenausführungen sowie -nachbehandlungen aus.

Das umfassende Sortiment wird durch eine Flachbohrkrone (**TPDC-FC**) abgerundet, die Ihnen ermöglicht Bohrungen mit nahezu planem Grund zu erzielen. Die Zentrierung erfolgt über einen Schneidenspitzenwinkel von 145°, der sich sehr positiv auf die Stabilität und Oberflächengüte auswirkt.

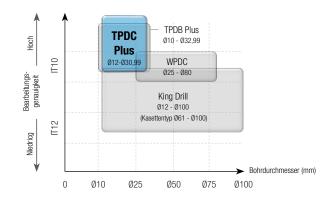
Der TPDC Plus deckt alle gängigen Bohrtiefen dank seiner Ausführungen in 1,5xD, 3xD, 5xD, 8xD, 10xD und 12xD ab. Für jeden Anwendungsfall steht somit der ideale Bohrkörper zur Verfügung!

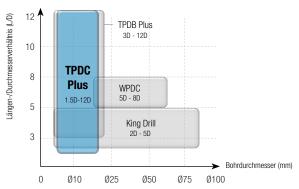
Hochpräzise und einfache Klemmung

 Einstufiges Klemmverfahren für komfortablen Wechsel der Bohrköpfe

Verbesserte Performance

- Reduzierte Schnittlast dank der großen Spanwinkel

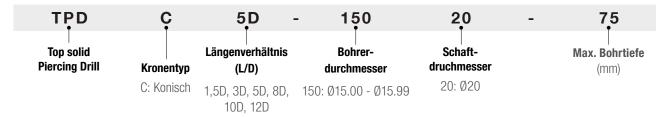

Prozesssichere Spanausbringung


- Spiralisierte Kühlmittelzuführung und polierte Spannuten

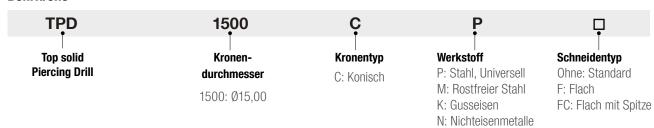
Umfassendes Sortiment

- Speziell entwickelte Bohrkronen für alle gängigen Werkstoffe (P, M, K, N)
- Bohrkörper im Längen-/Durchmesserverhältnis 1,5xD, 3xD, 5xD, 8xD, 10xD und 12xD
- TPDC-FC für die Erzeugung eines nahezu planen Bohrgrundes

Anwendungsbereich


		Anwendungsbereich						
Werkzeug	Bohrdurchmesser (Ø)	Längen-/ Durchschnitts- verhältnis (L/D)	Toleranz Ø Bohrer	Bohrloch- toleranz	Oberflächengüte (Ra)	Werkstoff		
TPDC Plus	12,00 - 30,99 mm	1,5, 3, 5, 8, 10, 12	h7	IT10	≤ 3,0 µm	P, M, K, N		

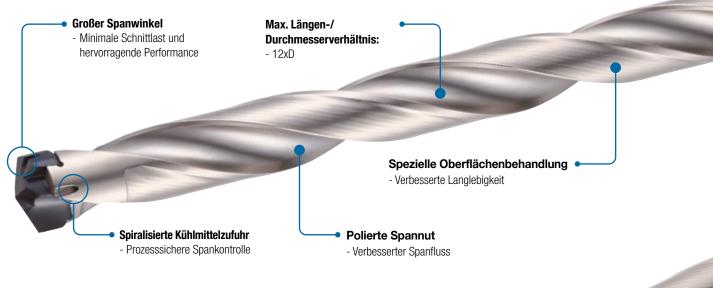
Bearbeitungsbeispiele


Energieerzeugung	Schiffsbau	Bahnindustrie / Bauwesen	Luftfahrt	Automobil

Codesystem

Bohrkörper

Bohrkrone



Eigenschaften Bohrkronen

Form		Werkstoff	Bohr Ø (mm)	Eigenschaften
	СР	PK	Ø12,00 - Ø30,99	Hohe Bearbeitungsqualität dank exzellenter Zentrierung Hervorragende Oberflächengüte und Rundheit Speziell entwickelte Schneidengeometrie für prozesssichere Spanausbringung
	CM new	M	Ø12,00 - Ø30,99	Höchste Prozesssicherheit dank minimaler Schnittlast Spezielles Substrat und Beschichtung zur Vermeidung von Aufbauschneiden und Ausbrüchen
	CN new	N	Ø12,00 - Ø30,99	Ultra-feines Substrat für maximale Standzeiten Hervorragende Spanausbringung und minimale Schnittlast dank speziell nachbehandelter, scharfer Schneide
	FC new	P	Ø12,00 - Ø30,99	Spezielle Schneidkantengeometrie für ideale Zentrierung Variabel einsetzbar auch bei ungünstigen Bedingungen wie schrägen, runden oder unebenen Oberflächen sowie geeignet zum Tauchen und Aufbohren → TPDC-FC insert

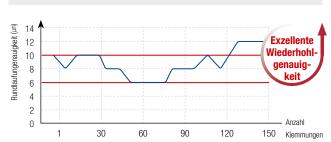
Eigenschaften Bohrkörper

- Einstufige Klemmung Verbesserte Stabilität und reduzierte Rüstzeiten
- Spiralisierte Kühlmittelzufuhr Hervorragende Kühleigenschaften und Spanausbringung
- Großer Spanwinkel und polierte Spannut Reduzierte Schnittlast und verbesserte Spankontrolle

Aufbau Bohrkörper

- Klemmbereich
- Verdrehsicherung
- Klemmbereich und Verdrehsicherung verhindern eine Bewegung der Bohrkrone während der Bearbeitung

Rundlaufgenauigkeit


Langzeitbewertung

Körper TPDC5D-15020-75

(Ø Bohrung = 15 mm

► Rundlaufgenauigkeit nach Einsatz 40 von Bohrkronen <15 µm

Wiederholgenauigkeit Klemmung

► Nach 150 Klemmungen ist die Rundlaufgenauigkeit <6 µm

Klemmung der Bohrkrone

Einsatz verbesserter Schlüssel

Ausschließlich für Bohrkronen mit seitlicher Nut nutzbar (neue Ausführung)

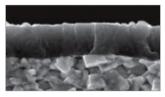
- Plattensitz reinigen.
- Bohrkrone einsetzen.
- 3 Schlüssel in Nuten der Krone einsetzen.

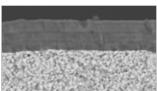
4 Zur Befestigung der Krone Schlüssel im Uhrzeigersinn drehen.

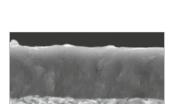
Bohrkrone befestigt

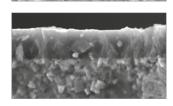
Einsatz konventioneller Schlüssel

Nutzbar mit allen Bohrkronen (Standard und neue Ausführung). Nach Austausch der Standard-Bohrkronen empfehlen wir ausschließlich den Einsatz des verbesserten Schlüssels.




Plattensitz reinigen.


Bohrkrone einsetzen.


A und B parallel ausrichten, zur Befestigung der Krone Schlüssel im Uhrzeigersinn drehen Bohrkrone befestigt

Eigenschaften Sorten

PC5335

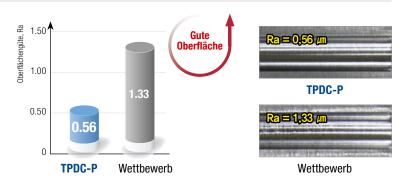
- PVD Beschichtung mit hoher Zähigkeit und hervorragender Schmierfähigkeit
- Beschichtung mit hoher Adhäsion
- Universelle Sorte für eine Vielzahl von Werkstoffen

- Verbesserte Verschleißfestigkeit und reduzierte Bildung von Aufbauschneiden sowie Ausbrüchen dank hochharter Beschichtung mit hervorragender Schmierfähigkeit
- Spezielle Nachbehandlung für verbesserte Spankontrolle und Oberflächengüten
- Geeignetet für die Bearbeitung von Kohlenstoffstählen

PC5300

- PVD Beschichtung mit hoher Härte und großer thermischen Stabilität
- Hohe Prozesssicherheit dank reduzierter Ausbrüche
- Einsetzbar für die Bearbeitung legierter Stähle und Gusseisen

- PVD Beschichtung mit hoher Härte und extrem glatter Oberfläche
- Beschichtung mit hoher Adhäsion und Widerstand gegen thermische Belastungen
- Einsetzbar für die Bearbeitung rostfreier Stähle


Leistungsbeurteilung

Oberflächengüte

Werkstoff Legierter Stahl (42CrMo4, HRC22) Schnittvc = 100 m/min, fn = 0.20 mm/U,bedingungen ap = 90 mm, nass (10 bar)Werkzeuge Krone TPD1900CP (PC5335)

TPDC5D-19025-95 Körper

(Ø Bohrung = 19 mm

► Gute Oberfläche dank guter Schmierfähigkeit der Beschichtung

Werkstoff Kohlenstoffstahl (C45, HRC18),

Schräge Fläche 15°

vc = 100 m/min Schnittbedingungen fn = 0.18 mm/U

ap = 30 mm, nass (20 bar)

Werkzeuge TPD2000CP-FC (PC5335) Krone

TPDC3D-20025-60

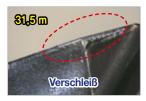
 $(\emptyset Bohrung = 20 mm)$

TPDC-FC

Wettbewerb

▶ Gute Oberfläche dank der speziellen Schneidengeometrie

Leistungsbeurteilung

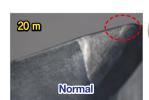

Krone TPD1500CP (PC5335) Körper TPDC12D-15020-170

(Ø Bohrung = 15 mm)

Verschleiß

TPDC-P

Wettbewerb


▶ Verbesserte Standzeit dank spezieller Schneidengeometrie

Werkstoff Rostfreier Stahl (X5CrNi18-9, HB187) **Schnitt-** vc = 60 m/min, fn = 0,05 mm/U,

Schnitt- vc = 60 m/min, fn = 0,05 mm/U,bedingungen ap = 40 mm, nass (30 bar)Werkzeuge Krone TPD1500CM (PC330N)

Körper TPDC5D-15020-75

(Ø Bohrung = 15 mm)

TPDC-M

Wettbewerb

▶ Verbesserte Standzeit dank stabiler Klemmung und Zentrierungtool

Werkstoff Rostfreier Stahl (X5CrNi18-9, HB187)

Körper TPDC5D-15020-75

(\emptyset Bohrung = 15,9 mm)

TPDC-M

Keine Ausbrüche

Wettbewerb

► Verbesserte Standzeit dank stabiler Schneide

Werkstoff Legierter Stahl (42CrMo4, HRC22),

Schräge Fläche 10°

Schnitt- vc = 80 m/min, fn = 0,18 mm/U,**bedingungen** ap = 30 mm, nass (20 bar)

Holder

Werkzeuge Insert TPD1500CP-FC (PC5335)

TPDC3D-15020-45 (Ø Bohrung = 15 mm Normal TPDC-FC

Wettbewerb

► Verbesserte Standzeit dank exzellentem Widerstand gegen Ausbrüche

 $\begin{tabular}{ll} \textbf{Werkstoff} & Kohlenstoffstahl (C45, HRC18) \\ \textbf{Schnitt-} & vc = 100 \text{ m/min, fn} = 0,25 \text{ mm/U,} \\ \textbf{bedingungen} & ap = 50 \text{ mm, nass (20 bar)} \\ \end{tabular}$

Werkzeuge Insert TPD2000CP-FC (PC5335) Holder TPDC3D-20025-60

TPDC3D-20025-60 (Ø Bohrung = 20 mm)

TPDC-FC

Wettbewerb

► Verbesserte Standzeit dank hoher Schmierfähigkeit der Beschichtung und exzellentem Widerstand gegen Ausbrüche

Leistungsbeurteilung

Spankontrolle

Werkstoff Baustahl (SM355A, HRC20)

ap = 90 mm, nass (10 bar)

Werkzeuge Krone TPD1900CP (PC5335)

Körper TPDC5D-19025-95

 $(\emptyset Bohrung = 19 mm)$

Wettbewerb

► Hervorragende Spanbildung und -kontrolle

Werkstoff Kohlenstoffstahl (C45, HRC18)

Schnitt- vc = 100 m/min**bedingungen** fn = 0,25 mm/U

ap = 50 mm, nass (20 bar)

Werkzeuge Krone TPD2000CP-FC (PC5335)

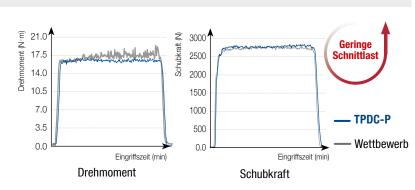
Körper TPDC3D-20025-60

(Ø Bohrung = 20 mm)

TPDC-FC Wettbewerb

► Hervorragende Spanbildung und -kontrolle

Schnittlast


Werkstoff Kohlenstoffstahl (C45, HRC18)

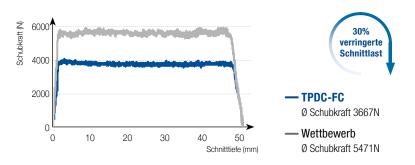
ap = 60 mm, nass (10 bar)

Werkzeuge Krone TPD1500CP (PC5335)

Körper TPDC5D-15025-75

(Ø Bohrung = 15 mm)

▶ Stabile Schnittlast dank spezieller Schneidengeometrie


Werkstoff Kohlenstoffstahl (C45, HRC18)

ap = 50 mm, nass (10 bar)

Werkzeuge Krone TPD2000CP-FC (PC5335)

Körper TPDC3D-20025-60

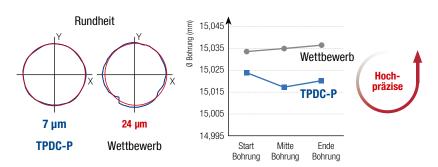
 $(\emptyset Bohrung = 20 mm)$

▶ Geringe und stabile Schnittlast dank der speziellen Schneidengeometrie

Leistungsbeurteilung

Genauigkeit

Werkstoff Legierter Stahl (42CrMo4, HRC22)


Schnitt- vc = 100 m/min **bedingungen** fn = 0,20 mm/U

ap = 60 mm, nass (10 bar)

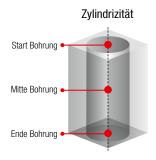
Werkzeuge Krone TPD1500CP (PC5335)

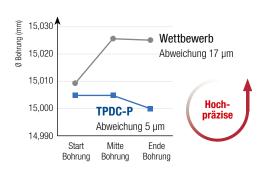
Körper TPDC5D-15025-75

 $(\emptyset Bohrung = 15 mm)$

 Stabile Schnittlast dank spezieller Schneidgeometrie und hervorragender Spankontrolle

Werkstoff Kohlenstoffstahl (C45, HRC19)

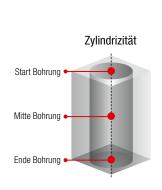

Schnitt- vc = 60 m/min **bedingungen** fn = 0,20 mm/U

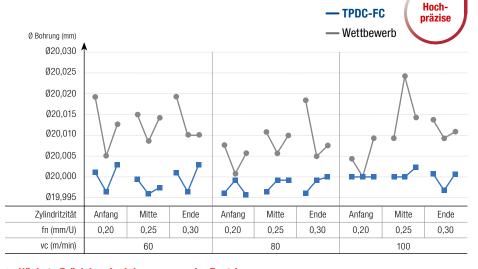

ap = 150 mm, nass (20 bar)

Werkzeuge Krone TPD1500CP (PC5335)

Körper TPDC12D-15020-170

(Ø Bohrung = 15 mm)

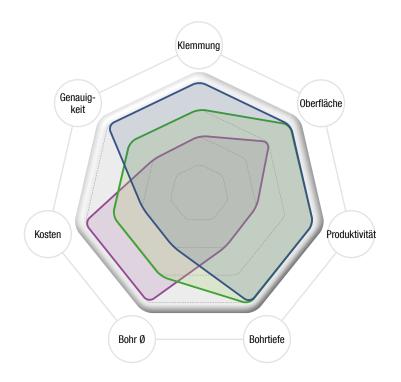



► Höchste Präzision

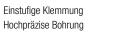
Werkstoff Kohlenstoffstahl (C45, HRC19)

Schnittbedingungen vc = 60 - 100 m/min, fn = 0.20 - 0.30 mm/U, ap = 50 mm, nass (20 bar)

Werkzeuge Krone TPD2000CP-FC (PC5335), Körper TPDC3D-20025-60, (Ø Bohrung = 20 mm)


► Höchste Präzision dank hervorragender Zentrierung

Leitfaden Wendeplattenbohrer


- TPDC Plus

TPDB Plus

— King Drill

TPDC Plus new

1,5xD, 3xD, 5xD, 8xD, 10xD, 12xD

TPDB Plus new

Hohe Oberflächengüte Hohe Produktivität 3xD, 5xD, 8xD, 10xD, 12xD

King Drill

Hohe Wirtschaftlichkeit 2xD, 3xD, 4xD, 5xD

Werkzeuge	Klemmung	Oberfläche	Produktivität	Bohrtiefe	Bohr Ø	Kosten	Genauigkeit
TPDC Plus 1000	***	****	***	***	***	***	****
TPDB Plus 1000	***	****	***	***	***	***	***
King Drill	**	***	**	**	***	****	**

Empfohlene Schnittbedingungen (TPDC-CP/CM/CN)

Längen-/Durchmesserverhältnis 1,5xD / 3xD

	Werkstück		Krone	Sorte	vc (m/min)	Vorschub (mm/U) nach Durchmesser des Bohrers 1,5xD, 3xD (mm)		
ISO	Werkstück	НВ				Ø12,00 - Ø17,99	Ø18,00 - Ø25,99	Ø26,00 - Ø30,99
P	Niedriger Anteil C	80 -120	СР	PC5335 PC337Q	120 (90 -140)	0,25 - 0,35	0,30 - 0,40	0,35 - 0,45
Kohlenstoff- stahl	Hoher Anteil C	180 - 280	СР	PC5335 PC337Q	110 (80 -130)	0,25 - 0,35	0,30 - 0,40	0,30 - 0,45
	Niedrig legiert	140 - 260	СР	PC5335 PC5300	120 (90 -140)	0,28 - 0,40	0,33 - 0,43	0,38 - 0,48
P	Niedrig legiert, wärmebehandelt	200 - 400	СР	PC5335 PC5300	80 (60 -100)	0,28 - 0,40	0,33 - 0,43	0,30 - 0,48
Legierter Stahl	Hoch liegiert	260 - 320	CP	PC5335 PC5300	75 (60 - 90)	0,20 - 0,35	0,22 - 0,40	0,25 - 0,45
	hoch legiert, wärmebehandelt	300 - 450	CP	PC5335 PC5300	65 (50 - 80)	0,20 - 0,35	0,22 - 0,40	0,22 - 0,45
M	Austenitisch	135 - 275	CM	PC330N	65 (50 - 80)	0,05 - 0,15	0,10 - 0,20	0,15 - 0,25
Rostfreier Stahl	Ferritisch, Martensitisch	135 - 275	CM	PC330N	75 (60 - 90)	0,10 - 0,20	0,15 - 0,30	0,20 - 0,35
K	Grauguss	150 - 230	СР	PC5335 PC5300	130 (90 -140)	0,35 - 0,45	0,40 - 0,50	0,45 - 0,55
Guss	Kugelgraphitguss	160 - 260	СР	PC5335 PC5300	120 (80 -130)	0,30 - 0,40	0,30 - 0,45	0,40 - 0,50
N	Aluminium	30 -150	CN	H01	200 (120 - 220)	0,35 - 0,45	0,40 - 0,50	0,45 - 0,55
Nichteisen- metalle	Kupferlegierungen	150 -160	CN	H01	200 (120 - 220)	0,35 - 0,45	0,40 - 0,50	0,45 - 0,55

⁻ Bei unterbrochenem Schnitt, Vorschub auf 0,10 - 0,15 mm/U reduzieren

Längen-/Durchmesserverhältnis 5xD

	Werkstück		Krone	Sorte	Sorte vc (m/min)		Vorschub (mm/U) nach Durchmesser des Bohrers 5xD (mm)		
ISO	Werkstück	НВ				Ø12,00 - Ø17,99	Ø18,00 - Ø25,99	Ø26,00 - Ø30,99	
P	Niedriger Anteil C	80 -120	СР	PC5335 PC337Q	110 (80 -140)	0,15 - 0,30	0,20 - 0,35	0,25 - 0,40	
Kohlenstoff- stahl	Hoher Anteil C	180 - 280	СР	PC5335 PC337Q	100 (70 -130)	0,15 - 0,30	0,20 - 0,35	0,25 - 0,40	
	Niedrig legiert	140 - 260	СР	PC5335 PC5300	110 (80 -140)	0,18 - 0,35	0,23 - 0,38	0,28 - 0,43	
P	Niedrig legiert, wärmebehandelt	200 - 400	СР	PC5335 PC5300	75 (50 -100)	0,18 - 0,35	0,23 - 0,38	0,28 - 0,43	
Legierter Stahl	Hoch liegiert	260 - 320	СР	PC5335 PC5300	70 (50 - 90)	0,18 - 0,30	0,20 - 0,35	0,25 - 0,40	
	hoch legiert, wärmebehandelt	300 - 450	CP	PC5335 PC5300	60 (40 - 80)	0,18 - 0,30	0,20 - 0,35	0,22 - 0,40	
M	Austenitisch	135 - 275	CM	PC330N	60 (40 - 80)	0,05 - 0,15	0,10 - 0,20	0,15 - 0,25	
Rostfreier Stahl	Ferritisch, Martensitisch	135 - 275	CM	PC330N	70 (50 - 90)	0,10 - 0,20	0,15 - 0,30	0,20 - 0,35	
K	Grauguss	150 - 230	СР	PC5335 PC5300	120 (80 -140)	0,25 - 0,40	0,30-0,45	0,35 - 0,50	
Guss	Kugelgraphitguss	160 - 260	СР	PC5335 PC5300	110 (70 -130)	0,20 - 0,35	0,25 - 0,40	0,30 - 0,45	
N	Aluminium	30 -150	CN	H01	200 (90 - 220)	0,35 - 0,45	0,40 - 0,50	0,45 - 0,55	
Nichteisen- metalle	Kupferlegierungen	150 -160	CN	H01	200 (90 - 220)	0,35 - 0,45	0,40 - 0,50	0,45 - 0,55	

⁻ Bei unterbrochenem Schnitt, Vorschub auf 0,10 - 0,15 mm/U reduzieren

⁻ Bei der Bearbeitung von rostfreiem Stahl mit niedrigen Schnittwerten starten und durch Erhöhung den optimalen Bereich festlegen

⁻ Bei der Bearbeitung von rostfreiem Stahl mit niedrigen Schnittwerten starten und durch Erhöhung den optimalen Bereich festlegen

Empfohlene Schnittbedingungen (TPDC-CP/CM/CN)

Längen-/Durchmesserverhältnis 8xD

	Werkstück		Krone	Sorte	vc (m/min)		Vorschub (mm/U) nach Durchmesser des Bohrers 8xD (mm)		
ISO	Werkstück	НВ				Ø12,00 - Ø17,99	Ø18,00 - Ø25,99	Ø26,00 - Ø30,99	
P	Niedriger Anteil C	80 -120	СР	PC5335 PC337Q	100 (70 -130)	0,12 - 0,25	0,17 - 0,30	0,22 - 0,35	
Kohlenstoff- stahl	Hoher Anteil C	180 - 280	СР	PC5335 PC337Q	90 (60 -120)	0,12 - 0,25	0,17 - 0,30	0,22 - 0,35	
	Niedrig legiert	140 - 260	СР	PC5335 PC5300	100 (70 -130)	0,15 - 0,30	0,20 - 0,33	0,25 - 0,38	
P	Niedrig legiert, wärmebehandelt	200 - 400	СР	PC5335 PC5300	65 (40 - 90)	0,15 - 0,30	0,20 - 0,33	0,25 - 0,38	
Legierter Stahl	Hoch liegiert	260 - 320	СР	PC5335 PC5300	60 (40 - 80)	0,15 - 0,25	0,17 - 0,30	0,22 - 0,35	
	hoch legiert, wärmebehandelt	300 - 450	СР	PC5335 PC5300	50 (30 - 70)	0,15 - 0,25	0,17 - 0,30	0,22 - 0,35	
M	Austenitisch	135 - 275	CM	PC330N	50 (30 - 70)	0,05 - 0,10	0,05 - 0,15	0,10 - 0,20	
Rostfreier Stahl	Ferritisch, Martensitisch	135 - 275	СМ	PC330N	60 (40 - 80)	0,05 - 0,15	0,10 - 0,25	0,15 - 0,30	
K	Grauguss	150 - 230	СР	PC5335 PC5300	110 (70 -130)	0,22 - 0,35	0,27 - 0,40	0,32 - 0,45	
Guss	Kugelgraphitguss	160 - 260	СР	PC5335 PC5300	100 (60 -120)	0,17 - 0,30	0,22 - 0,35	0,27 - 0,40	
N	Aluminium	30 -150	CN	H01	190 (80 - 200)	0,30 - 0,40	0,35 - 0,45	0,40 - 0,50	
Nichteisen- metalle	Kupferlegierungen	150 -160	CN	H01	190 (80 - 200)	0,30 - 0,40	0,35 - 0,45	0,40 - 0,50	

⁻ Bei unterbrochenem Schnitt, Vorschub auf 0,10 - 0,15 mm/U reduzieren

Längen-/Durchmesserverhältnis 10xD, 12xD

	Werkstück		Krone	Sorte	vc (m/min)	Vorschub (mm/U) nach Durchmesser des Bohrers 10xD, 12xD (mm)		
ISO	Werkstück	НВ				Ø12,00 - Ø17,99	Ø18,00 - Ø25,99	Ø26,00 - Ø30,99
P	Niedriger Anteil C	80 -120	СР	PC5335 PC337Q	90 (60 - 120)	0,10 - 0,20	0,15 - 0,25	0,20 - 0,30
Kohlenstoff- stahl	Hoher Anteil C	180 - 280	СР	PC5335 PC337Q	80 (50 - 110)	0,10 - 0,20	0,15 - 0,25	0,20 - 0,30
	Niedrig legiert	140 - 260	СР	PC5335 PC5300	90 (60 - 120)	0,13 - 0,25	0,18 - 0,28	0,23 - 0,33
P	Niedrig legiert, wärmebehandelt	200 - 400	СР	PC5335 PC5300	55 (40 - 80)	0,13 - 0,30	0,18 - 0,28	0,23 - 0,33
Legierter Stahl	Hoch liegiert	260 - 320	СР	PC5335 PC5300	50 (40 - 70)	0,13 - 0,25	0,15 - 0,25	0,20 - 0,30
	hoch legiert, wärmebehandelt	300 - 450	СР	PC5335 PC5300	40 (30 - 60)	0,13 - 0,25	0,15 - 0,25	0,20 - 0,30
M	Austenitisch	135 - 275	CM	PC330N	50 (30 - 60)	0,05 - 0,10	0,05 - 0,15	0,10 - 0,20
Rostfreier Stahl	Ferritisch, Martensitisch	135 - 275	СМ	PC330N	60 (40 - 70)	0,05 - 0,15	0,10 - 0,25	0,15 - 0,30
K	Grauguss	150 - 230	СР	PC5335 PC5300	100 (60 - 120)	0,20 - 0,30	0,25 - 0,35	0,30 - 0,40
Guss	Kugelgraphitguss	160 - 260	СР	PC5335 PC5300	90 (50 - 110)	0,15 - 0,25	0,20 - 0,30	0,25 - 0,35
N	Aluminium	30 -150	CN	H01	180 (70 - 190)	0,28 - 0,35	0,33 - 0,40	0,38 - 0,45
Nichteisen- metalle	Kupferlegierungen	150 -160	CN	H01	180 (70 - 190)	0,28 - 0,35	0,33 - 0,40	0,38 - 0,45

⁻ Bei unterbrochenem Schnitt, Vorschub auf 0,10 - 0,15 mm/U reduzieren

⁻ Bei der Bearbeitung von rostfreiem Stahl mit niedrigen Schnittwerten starten und durch Erhöhung den optimalen Bereich festlegen

⁻ Bei der Bearbeitung von rostfreiem Stahl mit niedrigen Schnittwerten starten und durch Erhöhung den optimalen Bereich festlegen

Bohrung herstellen bei 10xD / 12xD

Mit Pilotbohrung (empfohlen)

Pilotbohrung mit 0,5xD herstellen (mit 1,5xD oder 3xD Bohrer).

2. Einsatz Bohrer 10xD / 12xD

Bearbeitung mit den empfohlenen Schnittbedingungen starten.

Ohne Pilotbohrung

1. Pilotbohrung herstellen (ohne Pilotbohrer)

Pilotbohrung mit 0,5xD bei um 70% reduzierten Schnittbedingungen herstellen. Nach Abschluss 2 - 3 Sekunden Verweildauer in der Bohrung.

2. Bearbeitung unterbrechen

Kühlmittelzufuhr unterbrechen, Bohrer aus der Bohrung zurückziehen und 2 - 3 Sekunden U/min auf 0 reduzieren.

3. Fortsetzung vorbereiten

Bohrer wieder in die Pilotbohrung einführen und 2 - 3 mm Abstand zum Bohrungsgrund wahren, dann Kühlmittelzufuhr einschalten.

4. Bearbeitung fortsetzen

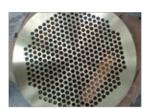
Bearbeitung mit den empfohlenen Schnittbedingungen starten.

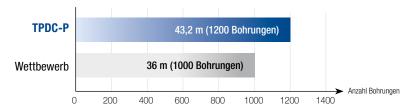
Empfohlene Schnittbedingungen (TPDC-FC)

	Werkstück		Sorte	vc (m/min)		Vorschub (mm/U) nach Durchmesser des Bohrers 1,5xD, 3xD, 5xD (mm)		
ISO	Werkstück	НВ			Ø12,00 - Ø17,99	Ø18,00 - Ø25,99	Ø26,00 - Ø30,99	
P	Niedriger Anteil C	80 -120		90 (70 -110)	0,18 - 0,28	0,2 - 0,3	0,23 - 0,33	
Kohlenstoff- stahl	Hoher Anteil C	180 - 280	DCE225	80 (60 -100)	0,18 - 0,28	0,2 - 0,3	0,23 - 0,33	
P	Niedrig legiert	140 - 260	PC5335 -	90 (70 -110)	0,18 - 0,28	0,2 - 0,3	0,23 - 0,33	
Legierter Stahl	Hoch legiert	260 - 320		70 (50 - 90)	0,18 - 0,28	0,2 - 0,3	0,23 - 0,33	

Bearbeitung	Planer Bohrungsgrund	Schräge Fläche	Gekrümmte Fläche	Tauchen	Aufbohren
Abb.					
1,5xD / 3xD	0	0	0	0	0
5xD	0	X	X	×	X

Bitte beachten Sie die Vorsichtsmaßnahmen beim Bohren im Falle von schrägen Oberflächenn, gekrümmten Oberflächen, Eintauchen und Aufbohren auf Seite 15.


Anwendungsbeispiele

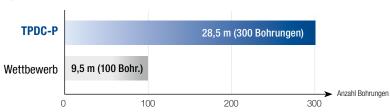

Kohlenstoffstahl (ASTM 1518, HRC18)

Werkstück Platte

Schnittbedingungen vc = 85 m/min, n = 1381 (U/min), fn = 0,27 mm/U, ap = 12 mm x 3 Durchgänge, nass

Werkzeuge Krone TPD1960CP (PC337Q), Körper TPDC3D-19025-57

▶ Die optimierte Schneidengeometrie verbessert die Verschleißfestigkeit und verringert die Schnittlast.

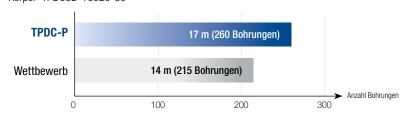

Legierter Stahl (42CrMo4, HRC22)

Werkstück Flansch

Schnittbedingungen vc = 82 m/min, n = 2000 (U/min), fn = 0,20 mm/U, ap = 12 mm, nass

Werkzeuge Krone TPD1300CP (PC5335), Körper TPDC8D-13016-104

▶ Die Beschichtung verbessert den Widerstand gegen Ausbrüche.

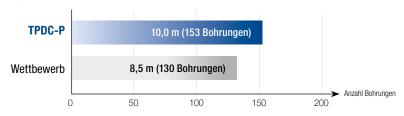

Kohlenstoffstahl (C45, HRC19)

Werkstück Welle

Schnittbedingungen vc = 60 m/min, n = 1187 (U/min), fn = 0,11 mm/U, ap = 65 mm, nass

Werkzeuge Krone TPD1610CP (PC337Q), Körper TPDC5D-16020-80

▶ Die optimierte Schneidengeometrie ermöglicht eine bessere Spanbildung und Spanausbringung.


Kohlenstoffstahl (C45, HRC40)

Werkstück Flansch

Schnittbedingungen vc = 60 m/min, n = 1062 (U/min), fn = 0,15 mm/U, ap = 65 mm, nass

Werkzeuge Krone TPD1800CP (PC5335), Körper TPDC5D-18025-90

▶ Die verbesserte Beschichtung erhöht die Verschleißfestigkeit.

Vorsichtsmaßnahmen beim Bohren

TPDC-CP/CM/CN

Schräge Fläche

Der Anstellwinkel zwischen Werkzeug und Werkstück sollte $< 6^{\circ}$ betragen.

Beim Ein- und Austritt aus der schrägen Fläche sollte der übliche Vorschub um 30 - 50% reduziert werden.

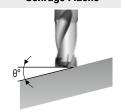
Paketbohrung

Abstände zwischen den Werkstücken könnten zum Spänestau und dem Bruch des Bohrers führen.

Jegliche Lücken zwischen den Werkstücken vermeiden.

Tauchen

Die ungleichmäßige Belastung des Bohrers kann zur Deformation oder zum Bruch des Bohrers führen.


Aufbohren

Aufbohren ist nicht empfohlen, da die Schneidkanten unverhältnismäßig stark belastet werden und dies die Prozesssicherheit einschränkt.

TPDC-FC

Schräge Fläche

Der Anstellwinkel zwischen Werkzeug und Werkstück sollte <10° betragen.

Beim Ein- und Austritt aus der schrägen Fläche sollte der übliche Vorschub um 30% reduziert werden.

Gekrümmte Fläche

Beim Eintritt in die gekrümmte Fläche sollte der übliche Vorschub um 30% reduziert werden (Falls $\theta > 30^\circ$, üblichen Vorschub um 50% reduzieren).

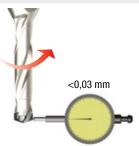
Tauchen

Ae < 0.5xD.

Ist die Tauchtiefe größer als der Durchmessers des Bohrers, in mehreren Stufen eintauchen.

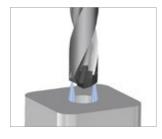
Aufbohren

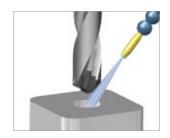
Üblichen Vorschub um 30% reduzieren. Zunächst eine 2mm tiefe Stufe herstellen um lange Späne zu vermeiden.


Einrichtung des Bohrers

- · Werkstückspannung prüfen
- Spindel der Maschine prüfen
- Zustand des Bohrkörpers prüfen
- Rundlaufgenauigkeit an der Schneide des Bohrers prüfen (max. 0,03 mm)
- Kühlmittelzufuhr prüfen (Druck, Volumen, Konzentration)
- Späne entfernen

Einstellung der horizontalen Ausrichtung



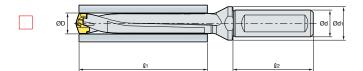

Einstellung der vertikalen Ausrichtung

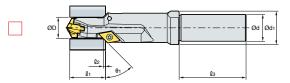
Kühlmittelzufuhr

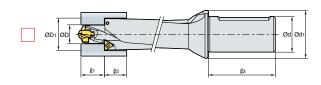
- Kühlmittelzufuhr bereits vor Eintritt in die Bohrung
- Minimaler Kühlmitteldruck: 5 bar
- Minimaler Kühlmitteldurchfluss: 5l/min

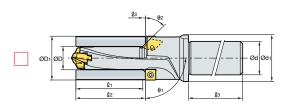
Problemlösungen Werkzeug

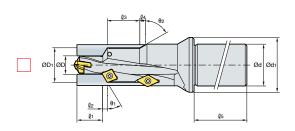
		Kratzer an der Freifläche					
	Ursache	 - Zu wenig Kühlmittel. - Zu wenig Kühlmittel bei tiefen Bohrungen durch Minimalmengenschmierung. - Verbiegen des Körpers durch falsche Ausrichtung oder hohe Auskraglänge. - Geringe Steifigkeit oder zu große Konzentrizität. 					
	Lösung	 Mehr Kühlmittel verwenden. Werkstückspannung und Konzentrizität prüfen. Rundlauf des Bohrers an der Schneide prüfen (<0,03 mm). Schnittgeschwindigkeit reduzieren. 					
		Verschleiß an der Freifläche					
	Ursache	 Bearbeitung von reinem Metall oder warmfesten Superlegierungen. Verschleiß des Körpers durch zu lange Nutzung. Instabile Bearbeitungsbedingungen am Ende der Bohrung (z.B. Schnittunterbrechungen). Zu wenig Kühlmittel an der Werkzeugperipherie. 					
	Lösung	 - Angemessene Standzeit für Bohrkörper definieren und berücksichtigen. - Werkstück am Ende der Bohrung auf Unregelmäßigkeiten prüfen. - Kühlmittel prüfen. 					
	Ausbrüche an der Schneidkante						
	Ursache	 Instabile Bearbeitungsbedingungen (Bohrungsaustritt ist unrund oder schräg, Querbohrung). Vibrationen durch instabile Klemmung. Zu wenig Steifigkeit der Maschine oder zu großer Auskraglänge des Bohrers. 					
	Lösung	- Spannsituation prüfen. - Schnittgeschwindigkeit reduzieren - Rundlauf des Bohrers an der Schneide prüfen (<0,03 mm)					
		Verschleiß an der Spanfläche					
	Ursache	- Zu geringe Schnittgeschwindigkeit. - Bearbeitung von Automatenstahl. - Verschleiß Krone oder Spannut. - Zu wenig Kühlmittel.					
	Lösung	- Schnittgeschwindigkeit erhöhen. - Verschlissenes Werkzeug ersetzen. - Mehr Kühlmittel zuführen.					
		Ausbrüche an der Spanfläche					
	Ursache	 - Ausbrüche aufgrund von Eintritt in bereits existierende Bohrung. - Unzureichende Spanausbringung aufgrund externer Kühlmittelzuführung. - Vibrationen aufgrund von instabiler Aufspannung. 					
· id	Lösung	 - Prüfen, ob bereits eine Bohrung existiert. - Nutzung von innerer Kühlmittelzufuhr (empfohlen). - Werkstückspannung prüfen. - Rundlauf des Bohrers an der Schneide prüfen (<0,03 mm). 					

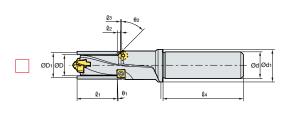

Problemlösung Werkstück

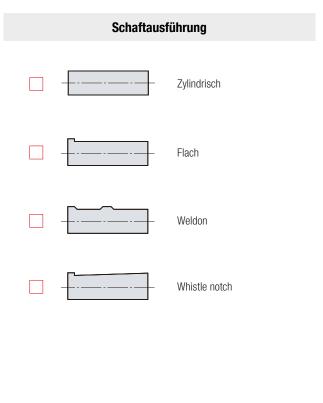

	Ungenügende Oberflächengüte (Rau, Kratzer,)				
Ursache	 Geringe Steifigkeit der Maschine und instabile Werkstückspannung. Zu große Konzentrizität und zu wenig Kühlmittel. 				
Lösung	- Werkstückspannung und Konzentrizität prüfen. - Kühlmittelvolumen und -druck erhöhen.				
	Gratbildung am Bohrungsaustritt				
Ursache	- Zu hoher Vorschub. - Verschlissene Bohrkrone.				
 Lösung	- Vorschub reduzieren. - Verschlissene Bohrkrone ersetzen.				
Abplatzer am Bohrungsaustritt					
Ursache	Bearbeitung von weichen Materialien wie Gusseisen.Zu hoher Vorschub.Verschlissene Bohrkrone.				
Lösung	- Vorschub reduzieren. - Verschlissene Bohrkrone ersetzen.				
The	ermische Verformung und Oxidation am Bohrungsaustritt				
Ursache	 - Zu hoher Vorschub. - Zu hohe Schnittlast. - Zu wenig Kühlmittel. - Verschlissene Bohrkrone. 				
Lösung	- Vorschub reduzieren. - Verschlissene Bohrkrone ersetzen.				


Problemlösung Allgemein


i i obici	illosurig Aligen								1	Erhöhen	1 Senke	n O Nutzei
		Lösung										
Problem	Erklärung	Schnittbedingungen					Sorte		Sonstige			
		VC	fn	Kühlung	fn (start)	Schnitt- tiefe	Zähigkeit	Härte	Steifigkeit Maschine	Vibrationen Maschine	Spannung Werkstück	Auskraglänge
Ausbrüche	Falsche Schnittbedingungen Niedrige Steifigkeit Werkzeug Aufbauschneidenbildung Falsche Sorte Vibrationen	1	1	0			1		1	•	1	•
	Zu hohe Schnittgeschwindigkeit (Verschleiß Freifläche)	1	1	0				1				
Verschleiß	Zu niedrige Schnittgeschwindigkeit (Verschleiß Schneidenzentrum)	1	1	0				1				
Bruch	Falsche Schnittbedingungen Zu hohe Schnittlast Zu große Auskraglänge Geringe Steifigkeit der Maschine	1	1	0	1	•			1		1	↓
Spankontrolle	Falsche Schnittbedingungen		1	0		1						
Oberfläche	Aufbauschneidenbildung Vibrationen Falsche Schnittbedingungen	1	•	0	•				1	•	1	1
Genauigkeit	Zu niedrige Schnittgeschwindigkeit (Verschleiß Schneidenzentrum)	1	1						1	+		+

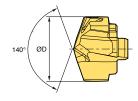

Bestellvorlage Sonderwerkzeuge





Bohrungstyp Grundloch Durchgangsbohrung Kühlmittelzufuhr Intern Extern Weitere Informationen Aktuelles Werkzeug Aktuelle Schnittbedingungen - n (U/min) oder vc (m/min): - vf (mm/min) oder fn (mm/U): - Schnitttiefe ap (mm): - Kriterium Standzeitende: Maschineninformationen - Bearbeitungszentrum:

- CNC:


- Konventionell:

Bohrkrone

Bohr	P Typ (CP)		D b.: . b.t.		M type (CM)	Beschichtet	N type (CN)		Halter	Schlüssel		
ØD (mm)	TPDC-P		Beschichte	et	TPDC-M	Beschichtet	TPDC-N	unbeschichtet	Haiter	Schlussei		
12,0	TPD1200CP				TPD1200CM		TPD1200CN		TPDC D-12016-			
12,2	TPD1220CP				TPD1220CM		TPD1220CN		1100_0-12010			
12,5	TPD1250CP				TPD1250CM		TPD1250CN		TPDC D-12516-			
12,6	TPD1260CP				TPD1260CM		TPD1260CN			_		
13,0	TPD1300CP				TPD1300CM		TPD1300CN		TPDC_D-13016			
13,5	TPD1350CP				TPD1350CM		TPD1350CN		TPDC_D-13516	_		
14,0	TPD1400CP				TPD1400CM		TPD1400CN			TPDC-		
14,2	TPD1420CP				TPD1420CM		TPD1420CN		TPDC_D-14016	W1216		
14,3	TPD1430CP				TPD1430CM		TPD1430CN					
14,5	TPD1450CP				TPD1450CM		TPD1450CN		TPDC_D-14516	_		
15,0	TPD1500CP				TPD1500CM		TPD1500CN		TPDC_D-15020			
15,5	TPD1550CP				TPD1550CM		TPD1550CN			_		
16,0	TPD1600CP				TPD1600CM		TPD1600CN					
16,3	TPD1630CP				TPD1630CM		TPD1630CN		TPDC_D-16020			
16,5	TPD1650CP				TPD1650CM		TPD1650CN					
16,7 17,0	TPD1670CP TPD1700CP	-			TPD1670CM TPD1700CM	-	TPD1670CN TPD1700CN	-				
,									TPDC_D-17020			
17,5	TPD1750CP				TPD1750CM		TPD1750CN					
17,7 18,0	TPD1770CP TPD1800CP				TPD1770CM TPD1800CM		TPD1770CN TPD1800CN			_		
18,1	TPD1810CP				TPD1810CM		TPD1810CN					
18,5	TPD1850CP				TPD1850CM		TPD1850CN		TPDC_D-18025			
18,6	TPD1860CP				TPD1860CM		TPD1860CN		1FDC_D-16023			
18,7	TPD1870CP				TPD1800CM		TPD1870CN			TPDC-		
19,0	TPD1900CP				TPD1900CM		TPD1900CN			W1721		
19,2	TPD1920CP				TPD1920CM		TPD1920CN		TPDC_D-19025	W1721		
19,5	TPD1950CP				TPD1950CM		TPD1950CN					
19,7	TPD1970CP	PC5335	PC5300	PC337Q	TPD1970CM	PC330N	TPD1970CN	H01				
20,0	TPD2000CP	1 00000	1 00000	1 0007 4	TPD2000CM	1 000011	TPD2000CN	1101				
20,5	TPD2050CP				TPD2050CM		TPD2050CN		TPDC_D-20025			
21,0	TPD2100CP				TPD2100CM		TPD2100CN					
21,5	TPD2150CP				TPD2150CM		TPD2150CN		TPDC_D-21025			
22,0	TPD2200CP	1			TPD2200CM	1 1	TPD2200CN					
22,5	TPD2250CP				TPD2250CM		TPD2250CN		TDD0 D 00005			
22,6	TPD2260CP				TPD2260CM		TPD2260CN		TPDC_D-22025			
22,7	TPD2270CP				TPD2270CM		TPD2270CN					
23,0	TPD2300CP				TPD2300CM		TPD2300CN		TDD0 D 0000F			
23,5	TPD2350CP				TPD2350CM		TPD2350CN		TPDC_D-23025	TDDO		
24,0	TPD2400CP				TPD2400CM		TPD2400CN		TDD0 D 04000	TPDC- W2225		
24,5	TPD2450CP				TPD2450CM		TPD2450CN		TPDC_D-24032	WZZZS		
25,0	TPD2500CP				TPD2500CM		TPD2500CN					
25,3	TPD2530CP				TPD2530CM		TPD2530CN					
25,5	TPD2550CP				TPD2550CM		TPD2550CN		TPDC_D-25032			
25,8	TPD2580CP				TPD2580CM		TPD2580CN					
25,9	TPD2590CP				TPD2590CM] [TPD2590CN					
26,0	TPD2600CP				TPD2600CM		TPD2600CN		TPDC D-26032-			
26,5	TPD2650CP				TPD2650CM		TPD2650CN		11 00_0-20002	_		
27,0	TPD2700CP				TPD2700CM		TPD2700CN		TPDC_D-27032			
27,5	TPD2750CP				TPD2750CM		TPD2750CN			\Box		
28,0	TPD2800CP				TPD2800CM		TPD2800CN		TPDC_D-28032	TPDC-		
28,5	TPD2850CP				TPD2850CM		TPD2850CN		11 00_0 20002 _	W2630		
29,0	TPD2900CP				TPD2900CM		TPD2900CN		TPDC_D-29032			
29,5	TPD2950CP				TPD2950CM		TPD2950CN		50_5 20002 _	_		
30,0	TPD3000CP				TPD3000CM		TPD3000CN		TPDC D-30032-			
30,5	TPD3050CP				TPD3050CM		TPD3050CN		20_2 00002 _			

 $\label{thm:continuous} \mbox{Weitere Durchmesser in unserem Katalog oder auf Anfrage erh\"{a}ltlich.}$

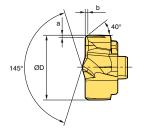

Schlüssel

Abb.	Bezeichnung TPDC- W1216		Bohrdurchmesser ØD (mm)	Drehmoment (Nm)	Schlüsselweite (mm)	
	TPDC-	W1216	12,00 - 16,99	2,0 - 3,0	1,2	
S (812-610		W1721	17,00 - 21,99	2,0 - 4,0	1,5	
and the second		W2225	22,00 - 25,99	3,0 - 4,0	2,0	
		W2630	26,00 - 30,99	4,0 - 5,0	2,5	

Bohrkrone

Bohr	FC Typ (FC)			Fase	(mm)	0.11"	
ØD (mm)	TPDC-FC	Beschichtet	Halter	а	b	Schlüssel	
12,0	TPD1200CP-FC		TPDC_D-12016				
12,2	TPD1220CP-FC		1FDC_D-12010				
12,5	TPD1250CP-FC		TPDC_D-12516				
12,6	TPD1260CP-FC		1FD0_D-12310				
13,0	TPD1300CP-FC		TPDC_D-13016				
13,5	TPD1350CP-FC		TPDC_D-13516				
14,0	TPD1400CP-FC						
14,2	TPD1420CP-FC		TPDC_D-14016	0,38	0,45	TPDC-W1216	
14,3	TPD1430CP-FC			0,30	0,43		
14,5	TPD1450CP-FC		TPDC_D-14516				
15,0	TPD1500CP-FC		TPDC_D-15020				
15,5	TPD1550CP-FC		11 BO_D-13020				
16,0	TPD1600CP-FC						
16,3	TPD1630CP-FC		TPDC_D-16020				
16,5	TPD1650CP-FC		11 00_0-10020				
16,7	TPD1670CP-FC						
17,0	TPD1700CP-FC						
17,5	TPD1750CP-FC		TPDC_D-17020				
17,7	TPD1770CP-FC						
18,0	TPD1800CP-FC						
18,1	TPD1810CP-FC						
18,5	TPD1850CP-FC		TPDC_D-18025			ı	
18,6	TPD1860CP-FC						
18,7	TPD1870CP-FC					TPDC-W1721	
19,0	TPD1900CP-FC					11 00-111721	
19,2	TPD1920CP-FC		TPDC D-19025-				
19,5	TPD1950CP-FC		11 00_0 13020 _				
19,7	TPD1970CP-FC	PC5335					
20,0	TPD2000CP-FC		TPDC_D-20025		0,55		
20,5	TPD2050CP-FC		11 BO_B 20020 _				
21,0	TPD2100CP-FC		TPDC_D-21025	0,46			
21,5	TPD2150CP-FC	<u> </u>					
22,0	TPD2200CP-FC						
22,5	TPD2250CP-FC		TPDC_D-22025				
22,6	TPD2260CP-FC		11 BO_B 22020 _				
22,7	TPD2270CP-FC						
23,0	TPD2300CP-FC		TPDC_D-23025				
23,5	TPD2350CP-FC		11 20_2 20020 _				
24,0	TPD2400CP-FC		TPDC_D-24032			TPDC-W2225	
24,5	TPD2450CP-FC						
25,0	TPD2500CP-FC						
25,3	TPD2530CP-FC		TDD0 D 05000				
25,5	TPD2550CP-FC		TPDC_D-25032				
25,8	TPD2580CP-FC						
25,9	TPD2590CP-FC						
26,0	TPD2600CP-FC		TPDC_D-26032				
26,5	TPD2650CP-FC			_	1		
27,0	TPD2700CP-FC		TPDC_D-27032				
27,5	TPD2750CP-FC	-		_			
28,0	TPD2800CP-FC		TPDC_D-28032	0,54	0,65	TPDC-W2630	
28,5	TPD2850CP-FC	-					
29,0	TPD2900CP-FC		TPDC_D-29032				
29,5	TPD2950CP-FC			_	1		
30,0	TPD3000CP-FC		TPDC_D-30032				
30,5	TPD3050CP-FC						

 $We itere\ Durchmesser\ in\ unserem\ Katalog\ oder\ auf\ Anfrage\ erh\"{a}ltlich.\ TPDC-FC\ Kronen\ sind\ nicht\ nach schleifbar.$

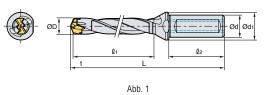

Schlüssel

Abb.	Bez	reichnung	Bohrdurchmesser ØD (mm)	Drehmoment (Nm)	Schlüsselweite (mm)
	TPDC-	W1216	12,00 - 16,99	2,0 - 3,0	1,2
5 pH2-0Ha		W1721	17,00 - 21,99	2,0 - 4,0	1,5
		W2225	22,00 - 25,99	3,0 - 4,0	2,0
		W2630	26,00 - 30,99	4,0 - 5,0	2,5

TPDC Plus (1,5xD / 3xD)

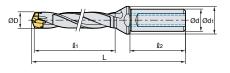
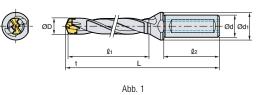


Abb. 2


	Bezeichnung	ØD	Ød	Ø4.	0.	ℓ 2	L	Passende Kronen	Abl
	Dezeicillulig	טש	Øū	Ød1	l 1	€2	L	rassellue Kiulleli	AUI
PDC	1.5D-12016-18	12,0 - 12,4	16	20	18	48	85	TPD1200C1249C_	1
	1.5D-12516-19	12,5 - 12,9	16	20	19	48	86	TPD1250C1299C_	1
	1.5D-13016-20	13,0 - 13,4	16	20	20	48	87	TPD1300C1349C_	1
	1.5D-13516-20	13,5 - 13,9	16	20	20	48	88	TPD1350C1399C_	1
	1.5D-14016-21	14,0 - 14,4	16	20	21	48	93	TPD1400C1449C_	1
	1.5D-14516-22	14,5 - 14,9	16	20	22	48	94	TPD1450C1499C_	1
	1.5D-15020-23	15,0 - 15,9	20	25	23	50	95	TPD1500C1599C_	2
	1.5D-16020-24	16,0 - 16,9	20	25	24	50	98	TPD1600C1699C_	2
	1.5D-17020-26	17,0 - 17,9	20	25	26	50	100	TPD1700C1799C_	2
	1.5D-18025-27	18,0 - 18,9	25	33	27	56	110	TPD1800C1899C_	2
	1.5D-19025-28	19,0 - 19,9	25	33	28	56	112	TPD1900C1999C_	2
	1.5D-20025-30	20,0 - 20,9	25	33	30	56	114	TPD2000C2099C_	2
	1.5D-21025-31	21,0 - 21,9	25	33	31	56	116	TPD2100C2199C_	2
	1.5D-22025-33	22,0 - 22,9	25	33	33	56	119	TPD2200C2299C_	2
	1.5D-23025-34	23,0 - 23,9	25	33	34	56	121	TPD2300C2399C_	2
	1.5D-24032-36	24,0 - 24,9	32	43	36	60	130	TPD2400C2499C_	2
	1.5D-25032-37	25,0 - 25,9	32	43	37	60	132	TPD2500C2599C_	2
	1.5D-26032-39	26,0 - 26,9	32	43	39	60	134	TPD2600C2699C_	2
	1.5D-27032-40	27,0 - 27,9	32	43	40	60	136	TPD2700C2799C_	2
	1.5D-28032-42	28,0 - 28,9	32	43	42	60	138	TPD2800C2899C_	2
	1.5D-29032-43	29,0 - 29,9	32	43	43	60	141	TPD2900C2999C_	2
	1.5D-30032-45	30,0 - 30,9	32	43	45	60	143	TPD3000C3099C_	2
	3D-12016-36	12,0 - 12,4	16	20	36	48	99	TPD1200C1249C_	-
	3D-12516-38	12,5 - 12,9	16	20	38	48	101	TPD1250C1299C_	1
	3D-13016-39	13,0 - 13,4	16	20	39	48	103	TPD1300C1349C_	1
	3D-13516-41	13,5 - 13,9	16	20	41	48	105	TPD1350C1399C_	1
	3D-14016-42	14,0 - 14,4	16	20	42	48	106	TPD1400C1449C_	
	3D-14516-44	14,5 - 14,9	16	20	44	48	107	TPD1450C1499C_	1
	3D-15020-45	15,0 - 15,9	20	25	45	50	113	TPD1500C1599C_	2
	3D-16020-48	16,0 - 16,9	20	25	48	50	117	TPD1600C1699C_	2
	3D-17020-51	17,0 - 17,9	20	25	51	50	120	TPD1700C1799C_	2
	3D-18025-54	18,0 - 18,9	25	33	54	56	132	TPD1800C1899C_	2
	3D-19025-57	19,0 - 19,9	25	33	57	56	135	TPD1900C1999C_	2
	3D-20025-60	20,0 - 20,9	25	33	60	56	138	TPD2000C2099C_	2
	3D-21025-63	21,0 - 21,9	25	33	63	56	141	TPD2100C2199C_	2
	3D-22025-66	22,0 - 22,9	25	33	66	56	145	TPD2200C2299C_	2
	3D-23025-69	23,0 - 23,9	25	33	69	56	149	TPD2300C2399C_	2
	3D-24032-72	24,0 - 24,9	32	43	72	60	159	TPD2400C2499C_	2
	3D-25032-75	25,0 - 25,9	32	43	75	60	162	TPD2500C2599C_	2
	3D-26032-78	26,0 - 26,9	32	43	78	60	173	TPD2600C2699C_	2
	3D-27032-81	27,0 - 27,9	32	43	81	60	176	TPD2700C2799C_	2
	3D-28032-84	28,0 - 28,9	32	43	84	60	180	TPD2800C2899C_	2
	3D-29032-87	29,0 - 29,9	32	43	87	60	185	TPD2900C2999C_	2
	3D-30032-90	30,0 - 30,9	32	43	90	60	188	TPD3000C3099C_	2

Weitere Ausführungen in unserem Katalog oder auf Anfrage erhältlich.

TPDC Plus (5xD / 8xD)

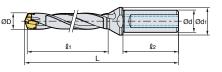
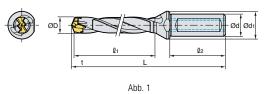


Abb. 2


	Da-alahanan	an.						Danaarda Kranaa	A h. h.
	Bezeichnung	ØD	Ød	Ød1	ℓ 1	l 2	L	Passende Kronen	Abb.
TPDC	5D-12016-60	12,0 - 12,4	16	20	60	48	123	TPD1200C1249C_	1
	5D-12516-63	12,5 - 12,9	16	20	63	48	126	TPD1250C1299C_	1
	5D-13016-65	13,0 - 13,4	16	20	65	48	129	TPD1300C1349C_	1
	5D-13516-68	13,5 - 13,9	16	20	68	48	132	TPD1350C1399C_	1
	5D-14016-70	14,0 - 14,4	16	20	70	48	134	TPD1400C1449C_	1
	5D-14516-73	14,5 - 14,9	16	20	73	48	136	TPD1450C1499C_	1
	5D-15020-75	15,0 - 15,9	20	25	75	50	143	TPD1500C1599C_	2
	5D-16020-80	16,0 - 16,9	20	25	80	50	149	TPD1600C1699C_	2
	5D-17020-85	17,0 - 17,9	20	25	85	50	154	TPD1700C1799C_	2
	5D-18025-90	18,0 - 18,9	25	33	90	56	168	TPD1800C1899C_	2
	5D-19025-95	19,0 - 19,9	25	33	95	56	173	TPD1900C1999C_	2
	5D-20025-100	20,0 - 20,9	25	33	100	56	178	TPD2000C2099C_	2
	5D-21025-105	21,0 - 21,9	25	33	105	56	183	TPD2100C2199C_	2
	5D-22025-110	22,0 - 22,9	25	33	110	56	189	TPD2200C2299C_	2
	5D-23025-115	23,0 - 23,9	25	33	115	56	195	TPD2300C2399C_	2
	5D-24032-120	24,0 - 24,9	32	43	120	60	207	TPD2400C2499C_	2
	5D-25032-125	25,0 - 25,9	32	43	125	60	212	TPD2500C2599C_	2
	5D-26032-130	26,0 - 26,9	32	43	130	60	225	TPD2600C2699C_	2
	5D-27032-135	27,0 - 27,9	32	43	135	60	230	TPD2700C2799C_	2
	5D-28032-140	28,0 - 28,9	32	43	140	60	236	TPD2800C2899C_	2
	5D-29032-145	29,0 - 29,9	32	43	145	60	243	TPD2900C2999C_	2
	5D-30032-150	30,0 - 30,9	32	43	150	60	248	TPD3000C3099C_	2
	8D-12016-96	12,0 - 12,4	16	20	96	48	159	TPD1200C1249C_	1
	8D-12516-100	12,5 - 12,9	16	20	100	48	163	TPD1250C1299C_	1
	8D-13016-104	13,0 - 13,4	16	20	104	48	168	TPD1300C1349C_	1
	8D-13516-108	13,5 - 13,9	16	20	108	48	173	TPD1350C1399C_	1
	8D-14016-112	14,0 - 14,4	16	20	112	48	176	TPD1400C1449C_	1
	8D-14516-116	14,5 - 14,9	16	20	116	48	180	TPD1450C1499C_	1
	8D-15020-120	15,0 - 15,9	20	25	120	50	188	TPD1500C1599C_	2
	8D-16020-128	16,0 - 16,9	20	25	128	50	197	TPD1600C1699C_	2
	8D-17020-136	17,0 - 17,9	20	25	136	50	205	TPD1700C1799C_	2
	8D-18025-144	18,0 - 18,9	25	33	144	56	222	TPD1800C1899C_	2
	8D-19025-152	19,0 - 19,9	25	33	152	56	230	TPD1900C1999C_	2
	8D-20025-160	20,0 - 20,9	25	33	160	56	238	TPD2000C2099C_	2
	8D-21025-168	21,0 - 21,9	25	33	168	56	246	TPD2100C2199C_	2
	8D-22025-176	22,0 - 22,9	25	33	176	56	255	TPD2200C2299C_	2
	8D-23025-184	23,0 - 23,9	25	33	184	56	264	TPD2300C2399C_	2
	8D-24032-192	24,0 - 24,9	32	43	192	60	279	TPD2400C2499C_	2
	8D-25032-200	25,0 - 25,9	32	43	200	60	287	TPD2500C2599C_	2
	8D-26032-208	26,0 - 26,9	32	43	208	60	303	TPD2600C2699C_	2
	8D-27032-216	27,0 - 27,9	32	43	216	60	311	TPD2700C2799C_	2
	8D-28032-224	28,0 - 28,9	32	43	224	60	320	TPD2800C2899C_	2
	8D-29032-232	29,0 - 29,9	32	43	232	60	330	TPD2900C2999C_	2
	8D-30032-240	30,0 - 30,9	32	43	240	60	338	TPD3000C3099C_	2

Weitere Ausführungen in unserem Katalog oder auf Anfrage erhältlich.

TPDC Plus (10xD / 12xD)

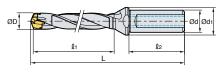
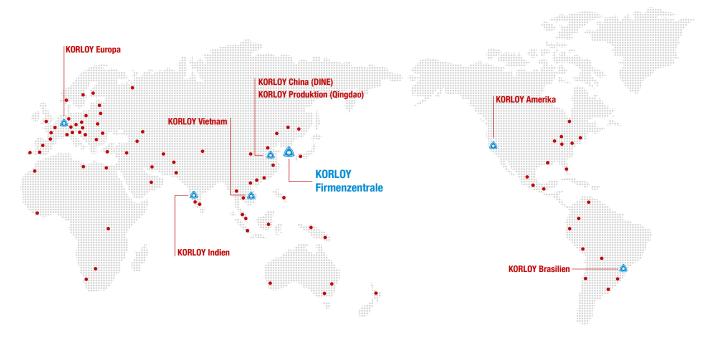



Abb. 2

	Bezeichnung	ØD	Ød	Ød ₁	ℓ 1	l 2	L	Passende Kronen	Abb.
TPDC	10D-12016-120	12,0-12,4	16	20	120	48	183	TPD1200C1249C_	1
	10D-12516-125	12,5-12,9	16	20	125	48	188	TPD1250C1299C_	1
	10D-13016-130	13,0-13,4	16	20	130	48	194	TPD1300C1349C_	1
	10D-13516-135	13,5-13,9	16	20	135	48	199	TPD1350C1399C_	1
	10D-14016-140	14,0-14,4	16	20	140	48	204	TPD1400C1449C_	1
	10D-14516-145	14,5-14,9	16	20	145	48	208	TPD1450C1499C_	1
	10D-15020-150	15,0-15,9	20	25	150	50	218	TPD1500C1599C_	1
	10D-16020-160	16,0-16,9	20	25	160	50	229	TPD1600C1699C_	1
	10D-17020-170	17,0-17,9	20	25	170	50	239	TPD1700C1799C_	1
	10D-18025-180	18,0-18,9	25	33	180	56	258	TPD1800C1899C_	1
	10D-19025-190	19,0-19,9	25	33	190	56	268	TPD1900C1999C_	1
	10D-20025-200	20,0-20,9	25	33	200	56	278	TPD2000C2099C_	1
	10D-21025-210	21,0-21,9	25	33	210	56	288	TPD2100C2199C_	1
	10D-22025-220	22,0-22,9	25	33	220	56	299	TPD2200C2299C_	1
	10D-23025-230	23,0-23,9	25	33	230	56	310	TPD2300C2399C_	1
	10D-24032-240	24,0-24,9	32	43	240	60	327	TPD2400C2499C_	2
	10D-25032-250	25,0-25,9	32	43	250	60	337	TPD2500C2599C_	2
	10D-26032-260	26,0-26,9	32	43	260	60	355	TPD2600C2699C_	2
	10D-27032-270	27,0-27,9	32	43	270	60	365	TPD2700C2799C_	2
	10D-28032-280	28,0-28,9	32	43	280	60	376	TPD2800C2899C_	2
	10D-29032-290	29,0-29,9	32	43	290	60	388	TPD2900C2999C_	2
	10D-30032-300	30,0-30,9	32	43	300	60	398	TPD3000C3099C_	2
	12D-12016-144	12,0-12,4	16	20	144	48	207	TPD1200C1249C_	1
	12D-12516-150	12,5-12,9	16	20	150	48	213	TPD1250C1299C_	1
	12D-13016-156	13,0-13,4	16	20	156	48	220	TPD1300C1349C_	1
	12D-13516-162	13,5-13,9	16	20	162	48	226	TPD1350C1399C_	1
	12D-14016-168	14,0-14,4	16	20	168	48	232	TPD1400C1449C_	1
	12D-14516-174	14,5-14,9	16	20	174	48	237	TPD1450C1499C_	1
	12D-15020-180	15,0-15,9	20	25	180	50	248	TPD1500C1599C_	1
	12D-16020-192	16,0-16,9	20	25	192	50	261	TPD1600C1699C_	1
	12D-17020-204	17,0-17,9	20	25	204	50	273	TPD1700C1799C_	1
	12D-18025-216	18,0-18,9	25	33	216	56	294	TPD1800C1899C_	1
	12D-19025-228	19,0-19,9	25	33	228	56	306	TPD1900C1999C_	1
	12D-20025-240	20,0-20,9	25	33	240	56	318	TPD2000C2099C_	1
	12D-21025-252	21,0-21,9	25	33	252	56	330	TPD2100C2199C_	1
	12D-22025-264	22,0-22,9	25	33	264	56	343	TPD2200C2299C_	1
	12D-23025-276	23,0-23,9	25	33	276	56	356	TPD2300C2399C_	1
	12D-24032-288	24,0-24,9	32	43	288	60	375	TPD2400C2499C_	2
	12D-25032-300	25,0-25,9	32	43	300	60	387	TPD2500C2599C_	2
	12D-26032-312	26,0-26,9	32	43	312	60	407	TPD2600C2699C_	2
	12D-27032-324	27,0-27,9	32	43	324	60	419	TPD2700C2799C_	2
	12D-28032-336	28,0-28,9	32	43	336	60	432	TPD2800C2899C_	2
	12D-29032-348	29,0-29,9	32	43	348	60	446	TPD2900C2999C_	2
	12D-30032-360	30,0-30,9	32	43	360	60	458	TPD3000C3099C_	2

Weitere Ausführungen in unserem Katalog oder auf Anfrage erhältlich.

Firmenzentrale

Holystar B/D, 1350, Nambusunhwan-ro, Geumcheon-gu, Seoul, 08536, Korea Web: www.korloy.com

Cheongju Produktion

55, Sandan-ro, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28589, Korea

Jincheon Produktion

54, Gwanghyewonsandan 2-gil, Gwanghyewon-myeon, Jincheon-gun, Chungcheongbuk-do, 27807, Korea

Forschung & Entwicklung Cheongju

55, Sandan-ro, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28589, Korea

Forschung & Entwicklung Seoul

Holystar B/D, 1350, Nambusunhwan-ro, Geumcheon-gu, Seoul, 08536, Korea

© KORLOY AMERICA

620 Maple Avenue, Torrance, CA 90503, USA

(a) KORLOY INDIA

Ground Floor, Property No. 217, Udyog Vihar Phase 4, Gurgaon 122016, Haryana, Indien

(a) KORLOY BRASIL

Av. Aruana 280, conj.12, WLC, Alphaville, Barueri, CEP06460-010, SP, Brasilien

© KORLOY VIETNAM

No. 133 Le Loi street, Hoa Phu ward, Thu Dau Mot city, Binh Duong proviende, Vietnam

© KORLOY FACTORY QINGDAO

Ground Dongjing Road 56 District Free Trade Zone. Qingdao, China

(a) KORLOY FACTORY INDIA

Plot No. 415, Sector 8, IMT Manesar, Gurgaon 122051, Haryana, Indien

© KORLOY EUROPE

Gablonzer Straße 25-27, D-61440 Oberursel, Tel: +49-6171-27783-0, Fax: +49-6171-27783-59 E-Mail: info@korloyeurope.com, Web: www.korloyeurope.com

KTS - Korloy Tooling Solution

Gratis-APP im Store

Einfach kostenlos herunterladen, installieren und verwenden.

20210201

TN34-DE-01